Automatic nevi segmentation using adaptive mean shift filters and feature analysis
نویسندگان
چکیده
A novel automatic method of segmenting nevi is explained and analyzed in this paper. The first step in nevi segmentation is to iteratively apply an adaptive mean shift filter to form clusters in the image and to remove noise. The goal of this step is to remove differences in skin intensity and hairs from the image, while still preserving the shape of nevi present on the skin. Each iteration of the mean shift filter changes pixel values to be a weighted average of pixels in its neighborhood. Some new extensions to the mean shift filter are proposed to allow for better segmentation of nevi from the skin. The kernel, that describes how the pixels in its neighborhood will be averaged, is adaptive; the shape of the kernel is a function of the local histogram. After initial clustering, a simple merging of clusters is done. Finally, clusters that are local minima are found and analyzed to determine which clusters are nevi. When this algorithm was compared to an assessment by an expert dermatologist, it showed a sensitivity rate and diagnostic accuracy of over 95% on the test set, for nevi larger than 1.5mm.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملAdaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
متن کاملMultimodal MR Brain Segmentation Using Bayesian-based Adaptive Mean-Shift (BAMS)
In this paper, we validate our proposed segmentation algorithm called Bayesian-based adaptive mean-shift (BAMS) on real multimodal MR images provided by the MRBrainS challenge. BAMS is a fully automatic unsupervised segmentation algorithm. It is based on the adaptive mean shift wherein the adaptive bandwidth of the kernel for each feature point is estimated using our proposed Bayesian approach ...
متن کاملA Parallel Annealing Method For Automatic Color Cervigram Image Segmentation
The accurate and automatic segmentation of tissue regions in cervigram images can aid in the identification and classification of precancerous regions. We implement and analyze four GPU (Graphics Processing Unit) based clustering algorithms: K-means, mean shift, deterministic annealing, and spatially coherent deterministic annealing. From our results, we propose a novel parallel algorithm using...
متن کاملFeature Analysis of Chromatic or Achromatic Components based on Tensor Voting and Text Segmentation using Separated Clustering Algorithm
This paper presents a new technique for segmenting corrupted text images on the basis of color feature analysis by second order tensors. It is show how feature analysis can benefit from analyzing features using second order tensor with chromatic and achromatic components. Proposed technique is applied to text images corrupted by manifold types of various noises. Firstly, we decompose an image i...
متن کامل